
 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [758]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

COST EFFECTIVE APPROACH OF COMPLEX WEB SERVICE COMPOSITION
B. Muruganantham1, K. Vivekanandan2, Sahil Babel1 and Neha1

1Department of Computer Science and Engineering, SRM University, Chennai, India
2Department of computer science and Engineering, Pondicherry Engineering College, Pondicherry,

India

DOI: 10.5281/zenodo.1207051

ABSTRACT
Web services are gaining importance and are often used as a standard approach for integrating diverse

miscellaneous services often distributed over the network. Hence, it necessitates attaining high levels of

reliability and availability without being affected by any service, network or infrastructure failures. To

accomplish this, we propose an efficient mechanism which will narrow the plausibility of fault detection by

dynamic web service selection among similar services. The Quality-of-service (QoS) can have an important

effect on web service composition service reliability. In this paper, we perceive the rationale for the failure of

the web services and resolve it by considering the QoS attributes like response time, execution time, etc. The

proposed modeling approach indicates a possible reduction in the failure probability as well as a significant

improvement in the execution duration of the complex web services composition. This has been proved through

the results achieved with an experimental setup.

Keywords: Failure Probability, Quality-of-service (QoS), Web services, Response time, Execution duration.

I. INTRODUCTION
Web services composition are used to manage business processes. It is dynamic in nature. Complex web service

composition can be framed by identifying and integrating diverse web services distributed over the network.

Web Services is a service offered to facilitate communication between the Service provider and Service

consumer over the web. Web services can be defined and published by the service consumer and it has been

discovered and invoked for completing the task by the service consumer. Two or More web services combined

to complete a task is called composite web services or web services composition. Reliability achievement is a

big issue in service oriented computing; it is not like traditional standalone machine.

Web services are spread across the web which is remotely developed and hosted making it difficult to locate. It

may also happen that the service becomes unavailable without prior notice. Also its performance can

dynamically change according to various reasons like change in workload of servers, unstable network

connectivity or communication links etc.

Faults may occur in service oriented systems due to various reasons. There can be fault in its framework like

power fluctuations or any flaws made during the designing and implantation phase such as any software bug.

The defect can also be introduced manually by the administrators. There can also be an issue that the service

requested is not available or there is a very high response time.

In this paper, we present a methodology which will detect the fault in the web service composition and then

optimize the results obtained by minimizing the faults. For example, if a client requests for a set of services

from the server, for instance, a user wants to buy a book online. He will make a request and try to contact one

of the various servers available (like amazon.com, ebay.com, flipkart.com).There can be a failure in the web

service invocation, for instance, the server may not be available at that moment due to various reasons like

maintenance or server is down or the server might be taking a lot of time to reply to the request or the particular

requested web service is not offered by the server. Hence in such cases to minimize this tendency of failure we

can redirect the request to another server.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [759]

Service availability indicates whether a service is available or not ie. whether a response to the service

invocation has been successfully received. The Response Time is the duration from the time the request has

been sent till the time the response has been received.

The remnant part of the paper is constructed as follows: Section 2 provides a synopsis of the works related to

this field. Section 3 introduces the proposed model. The composition approach for fault detection, optimization,

and reduction of failure probability is discussed in the proposed approach. Finally the conclusion and future

direction are discussed.

II. RELATED WORKS
In this section, first willrundown and go through some of the related works and investigations on QoS

management and fault tolerance mechanism prior to examining the affiliation amidst our research work and

standardization efforts for the web services composition technique.

There are some previous researches on reliability and fault tolerance and the evaluation of the existing web

service composition. Researchers [1] scrutinize the predicament of employing the optimal and best strategy for

fault tolerance to build and establish a reliable service oriented system by mapping the user requirements and

prerequisites. It also examines the fault tolerance policy selection for the business processes which are

semantically homologous.

Various research experiments and investigations have been carried out on the subject of QoS aims selection of

web services and composition. A QoS-aware middleware platform [4] proposed and it reports the issues of web

services discovery from the repository for composition to maximizing the satisfaction of users by considering

the QoS properties.

QoS management has been extensively studied and analyzed in the horizon of web service composition system

[7], [5], [6]. The primary concern of this research is on the subsequent matters: QoS specification to

acknowledge characterization of functional performance and QoS attributes. [1], [2], [3], [4] discusses the QoS

properties providing the non-functional characteristics for web service selection when more than one service is

present with similar and comparable properties.

In [3] various QoS issues on web services (Availability, Response time, Throughput, Security properties like

authentication, confidentiality, data integrity and non-repudiation) are discussed from the point of view of the

service provider and service user. It states that the service users and providers need to be able to engage in QoS

negotiation. The providers should monitor the load they receive from the users and should check whether they

meet the service level agreement (SLA). The user must also check the quality-of-service they obtain.

In [8] the fault tolerant infrastructure for web services is studied which can be used for interoperability among

applications and for redistributing on the web with high reliability and availability demands. It must provide a

crystal-clear fault tolerance for the clients. The principle objective of this is to assure transparency in fault

tolerance for end users utilizing the active replication technique.

In contemporary, there has been a growing interest in processes which can be implemented by invoking multiple

web services. The client can cite their preferences and constraints and based on this the selection of services are

dynamic in nature for service composition and enforced by discovering the suitable services available at the

runtime [2] [4]. Negotiation techniques have also been used to attain and come up with a practical and

reasonable solution.

A hybrid model is proposed [9] to enhance the performance of complex composite web services. With the help

of this the rate of failure can be computed and also the reliability can be determined. However this does not

work towards achieving the minimal error.

The works mentioned above do not aim towards minimizing the probability of failure in web services which has

been taken into consideration in this paper.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [760]

III. PROPOSED MODEL

In this section of paper, we begin by first describing the architecture and its various entities. The different QoS

attributes for the web services are discussed followed by the required algorithms.

1. Architecture

The service provider is accountable for the providing the web services to the end users. The service consumer is

the client who is the end user or web application making the request for the web services and utilizing these

services created by the service provider. All the communication taking place will be tabulated in the service

register which will be later used for analyzing purpose.

Figure 1 Architecture Diagram

The request analyzer will be calculating the amount of time taken to transfer the request fromthe consumer to

the provider and to process this request. The response analyzer will be calculating the time required to send the

requested web service from service provider to the service consumer. The WS Status will mention the status of

the service provider concerning the web service request.

The request will be sent to all the service providers one at a time, and this data will be stored in the service

register which will later forward its data to the fault detector. It will be detecting the fault in the web service

invocation by various service providers which will be used to calculate the failure probability. This result will

then be examined by the optimizer which will try to minimize this failure probability previously obtained by the

fault detector. This can be done by redirecting the request to another nearby web service provider which will

provide the similar homogeneous web services.

The WS Invoker is used for invoking the web service from the web service provider as instructed by the

optimizer and will then send this service to the web service consumer.

2. Quality Criteria for Web Services

In the present scenario, there are multiple candidates available for web services with similar functionalities. In

such cases, QoS attributes impart some non-functional features for dynamic web service discovery. Based on

the previous research methods and experimental results [2], [3], [4] we exemplify the following QoS attributes

for the web services:

1. Service Availability. The service availability determines the possibility of the end user to access the

web service. The value of service availability is calculated as the total duration for which service is

available during the last t seconds.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [761]

2. Service Execution Duration. The service execution duration is computed as the expected duration in

seconds required by the service consumer to send the request and receive its results.

3. Service Response time. The Response time measures the duration receiving the response from the

server.

4. Service Failure probability. Failure occurs if either at the server side the request was not successfully

executed or when the end user does not receive its corresponding response. Hence the service failure

probability is computed as the ratio of the number of services which were not successfully executed to

the total number of web services.

3. Algorithm

Algorithm 1 Sending request to the service provider.

Input: SP: service provider.

 WS: web service.

Output: request sent.

1 int SPNumber = |SP|;

2 int WSNumber = |WS|;

3 int ser=0;

4 for (j=0; j<SPNumber; j++) do

5 ser++;

6 for (i=0; i<WSNumber; i++) do

7 sendurl (ser, SPNumber[j], WSNumber[i]);

8 end for

9 end for

In Algorithm 1, the web service consumer is sending the request for the web service to the web service

provider one at a time. The ser is the service index for the service provider which is being requested by the

service consumer.

Algorithm 2. Finding Response Time

Input: SP: service provider.

 WS: web service.

Output: RT: response time

1 Open Connection

2 int code: getResponseCode;

3 string response: getResponseMessage;

4 long StartTime: Current time of system

5 long Response Time: Current time – Start Time;

6 long x1: ResponseTime%1000;

7 long x2: ResponseTime /1000;

8 return ResponseTime;

In Algorithm 2, the Consumer bind with Provider to invoke the functionalities of web services. The

response i.e. Response Code, Response Message from the network is obtained. The response time is

calculated as the duration of the connection being established till it sends the corresponding requested web

service back to the service consumer.

Algorithm 3. Fault Detection

Input: RT: response time

Output: F: failure

1 int lim: Time limit of RT

2 if (RT>lim) then

3 code=408;

4 response= Timeout;

5 flag= true;

6 else if (code=404) then

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [762]

7 flag= true;

8 end

9 if (flag==true) then F=true;

10 else F=false;

11 return F;

__

In Algorithm 3, the failure can occur if the response time exceeds time limit or if the web service is not

available. The 408 is the request timeout error. It is an http status code which implies that the request the service

consumer sent to the service provider took longer than the web service provider was prepared to wait.

The 404 is the Not Found Error Http status code. This error is shown when the requested web service by the

service consumer is not available at the service provider.

Algorithm 4. Minimizing failure probability

Input: SP: service provider.

 WS: web service.

Output: request sent.

1 int SPNumber = |SP|;

2 int WSNumber = |WS|;

3 for (i=0; i<WSNumber; i++) do

4 for (j=0; j<SPNumber; j++) do

5 curService=WSi ;

6 curServer=SPj ;

7 Send request of curService to curServer.

8 if(code==200) then

9 break;

10 end

11 end

__

In Algorithm 4, the request for the web service made by the service consumer is sent to the service provider. If

due to any reason like the service was unavailable on that service provider or its response time is exceeding the

time limit etc. another request will be made to send the same service but this time to the next service provider.

This will ensure that the availability of web services increases and hence there will be significant reduction in

failure probability.

IV. EXPERIMENTAL SETUP
The experimental setup has various computers or nodes acting as the server. The client will send a request for a

web service. This request will be henceforth forwarded to the servers nearby one at a time.

The setup is first laid as show in Figure 2. There are two servers and three clients. Each client here is sending a

request for a web service to the server which is the service provider and in reply it is receiving a response either

success or failure from the web server. Here it can be noticed that there are many service invocation requests

resulting in failure.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [763]

Figure 2. Client server Setup

There can be various causes of failure now based on the Quality-of-Service (QoS) attributes as discussed in

section 3 of this paper.

1. When the web service is unavailable on the server

In this scenario, it may happen that the particular web service requested by the service consumer is not

available with the service provider. This can be due to various reasons like the server is down, network

connectivity issues, server maintenance is taking place or it may be permanently shut down.

Service availability is the possibility that a service invocation will be executed successfully with a response.

The value of service availability can be determined from the former data of service invocations as the ratio of

the number of successful execution of web service against the total number of request made. Hence this

unavailability of the requested web service on the service provider will eventually lead to an error message

received by service consumer hence acting as the failure.

2. When the web service has exceeded its response time

Here the web service provider is available unlike in the first scenario but is taking time way too long to

respond to the request made by the service consumer than it was supposed to. Hence due to this increase in

response time, it will increase the execution duration of the web composition and the service consumer will

have to wait for long which is unfavorable.

Response time is the total amount of time it takes to respond to a request for web service. It is the duration from

the point of time the request has been sent till the time its response has been received.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [764]

Figure 3. Improved Client server Setup

Hence in such cases to reduce the risk of failure the client's request for that particular web service will be

forwarded to other nearby servers providing similar web service as per request. This can be seen in Figure 3

which is an improved version of the Figure 2. As it can be seen in the previous figure the second client is first

receiving a failure in response from first server and then receiving a success from the second server. So instead

of doing so much we can directly redirect the service request to the third server which will eventually result in

success, hence reducing response time as well.

This will thus lead to the successful invocation of web services and is efficient to implement for the execution of

web services. Hence it increases the success probability for invocation of web services by reducing the failure

probability.

V. RESULT AND DISCUSSION
Our proposed model and algorithm have been tested on a wide range of the web service request which was

randomly generated. Experiments have been carried out to examine and compare the solutions which were

obtained after applying the proposed methodology.

The following table given below states some of the response status codes based on the request made by the

service consumer to the service provider where 200 represents the successful execution of web service, and

others represent a failure.

Table 1 Response status codes and message

Response Code Response Message

200 OK

400 Bad Request

404 Not Found

408 Request Timeout

Table 2 (a) & (b), presents the experimental results for only one request made for five web services with two

service providers available. It returnsthe response time along with the status for each request indicating the

outcome as success or failure. The web service index identifies the web service, and the server hit name

identifies the service provider to which the request for the web service has been sent.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [765]

Table 2 Experimental results of web service for one request

(a) Before implementing failure reduction

WEB

SERVICE

INDEX

STATUS RESPONSE

TIME

OUTCOME SERVER HIT

NAME

WS1 408 2.179sec FAIL Ser1

WS2 200 0.454sec SUCCESS Ser1

WS3 404 1.199sec FAIL Ser1

WS4 403 1.157sec FAIL Ser1

WS5 200 0.604sec SUCCESS Ser1

(b) After implementing failure reduction

WEB

SERVICE

INDEX

STATUS RESPONSE

TIME

OUTCOME SERVER HIT

NAME

WS1 408 1.658sec FAIL Ser2

WS2 200 0.454sec SUCCESS Ser1

WS3 200 0.568sec SUCCESS Ser2

WS4 403 0.166sec FAIL Ser2

WS5 200 0.889sec SUCCESS Ser1

Table 2 (a), shows the experimental result before implementation of fault reduction. Each service here is sent to

a single service provider whereas, in Table 2 (b), the web services have been redirected to another service

provider on the occurrence of a failure.

For instance, it can be observed that in Table 2 (b), the services which had previously failed as shown in Table

2 (a) have now been redirected to server 2. It can also be noted that the number of web services successfully

executing has increased.

Further, the experiment was extended to a different number of requests and then their aggregated values for

response time was used to calculate mean response time. The number of failure and success outcome for all

requests is being noted, and hence the failure probability for each web service is being calculated.

Table 3 Experimental results of web services for 100 request

(a) Before implementing failure reduction

WEB

SERVICE

INDEX

MEAN

RESPONSE

TIME

NUMBER OF

FAIL

OUTCOMES

NUMBER

OF

SUCCESS

OUTCOMES

FAILURE

PROBABILITY

WS1 1.456sec 42 58 0.42

WS2 0.961sec 24 76 0.24

WS3 0.872sec 21 79 0.21

WS4 2.256sec 55 45 0.55

WS5 0.567sec 19 81 0.19

(b) After implementing failure reduction

WEB

SERVICE

INDEX

MEAN

RESPONSE

TIME

NUMBER OF

FAIL

OUTCOMES

NUMBER

OF

SUCCESS

OUTCOMES

FAILURE

PROBABILITY

WS1 1.032sec 26 74 0.26

WS2 0.211sec 18 2 0.18

WS3 0.755sec 15 85 0.15

WS4 2.116sec 37 53 0.37

WS5 0.232sec 11 89 0.11

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [766]

Table 3 (a) & (b), presents aggregated data for 100 requests for five web services before and after applying the

proposed methodology respectively. It can be observed that there is an increase in the number of successful

execution of the web service. Hence there is a significant reduction in failure probability of web services by

increasing the availability of services in the event of failure.

Figure 4 Failure Probability versus number of requests.

(a) Before implementing failure reduction.

(b) After implementing failure reduction.

Figure 4 (a), (b) & Figure 4 (a), (b) presents the result of experiments conducted for 100, 200, 300, 400, 500

requests for five web services. Fig. 4 (a), (b) compare the failure probability and Fig. 5 (a), (b) compares the

response time before and after applying the proposed methodology.

Hence it can be clearly observed from the graph that the failure probability is getting reduced with better

response time. Thus the web services are being executed efficiently with optimum execution duration.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [767]

Figure 5 Response Time versus number of requests

(a) Before implementing failure reduction.

(b) After implementing failure reduction.

VI. CONCLUSION AND FUTURE WORK
We have given a streamlined approach for the structure of an optimized approach for the composition of web

services by dynamically selecting the web services which allows specifying constraint on quality prerequisites.

We have investigated the problem of the increasing risk of failure of web services by reducing the failure

probability as well as significant improvement in the execution duration of web services, or the composition is

observed with the help of the tabulations and the graphical analysis done during the experiment. Thus a

composition approach has been implemented for fault detection, optimization, and reduction of failure

probability.

In future, more exhaustive and extensive research will be done on other QoS values for efficient execution of

web services. This work can be extended to more complex web services dealing with sensitive data like in

medical diagnosis, bank transaction, etc

VII. REFERENCES
1. Zibin Zheng, Member, and Michael R. Lyu, "Selecting an Optimal Fault-Tolerance Strategy for Reliable

Service-Oriented Systems with Local and Global Constraints," IEEE Transactions on Computers vol. 64,

no. 1, pp. 219-231, Jan. 2015

2. D. Ardagna and B. Pernici, “Adaptive service composition in flexible processes,” IEEE Trans. Softw.

Eng., vol. 33, no. 6, pp. 369–384, Jun. 2007.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Muruganantham * et al., 7(3): March, 2018] Impact Factor: 5.164

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [768]

3. D. A. Menasce, “QoS issues in web services,” IEEE Internet Computer., vol. 6, no. 6, pp. 72–75, Nov.

/Dec. 2002.

4. L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “QoSAware middleware

for web services composition,” IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.

5. K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li,“QoS-Aware Middleware for Heterogeneous

Environments,” IEEE Comm. Magazine, vol. 39, no. 11, pp. 2-10, 2001.

6. M. Gillmann, G. Weikum, and W. Wonner, “Workflow Management with Service Quality Guarantees,”

Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 228-239, June 2002.

7. C. Aurrecoechea, A.T. Campbell, and L. Hauw, “A Survey of QoS Architectures,” Multimedia Systems,

vol. 6, no. 3, pp. 138-151, 1998.

8. Giuliana Teixeira Santos, Lau Cheuk Lung, and CarlosMontez discuss, "the fault tolerant infrastructure

for web services,” Proceedings of the 2005 Ninth IEEE International EDOC Enterprise Computing

Conference (EDOC’05) IEEE.

9. C Jaya Prakash, P Maruthurkarasi, R Balaji Ganesh, V Maheswari, “Hybrid Reliability Model to

Enhance the Efficiency of Composite Web Services,” 2013 IEEE International Conference on Emerging

Trends in Computing, Communication and Nanotechnology (ICECCN 2013)

CITE AN ARTICLE

Muruganantham, B., Vivekanandan, K., Babel, S., & N. (n.d.). COST EFFECTIVE APPROACH OF

COMPLEX WEB SERVICE COMPOSITION. INTERNATIONAL JOURNAL OF ENGINEERING

SCIENCES & RESEARCH TECHNOLOGY, 7(3), 758-768.

http://www.ijesrt.com/

